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Fluid—structure interaction problems arise in many different areas of engineering where the
system considered or some of its components are directly in contact with a fluid. Examples are
aircraft, jet engines, ships, pipelines, nuclear and chemical reactors, offshore structures, bridges,
etc. In these cases, the fluid often plays an important role in determining the behavior of the
structure of interest. For example, flutter could have disastrous consequences on aircraft, and
resonances resulting from flow-induced vibrations could provoke structural failures in nuclear
reactors, bridges and other structures subjected to a cross-flow. To prevent these potential
dramatic and expensive accidents, it is necessary to seek a reliable technique for the determina-
tion of the characteristics, in particular natural frequencies, damping levels and fatigue life, of
the structure in the presence of the fluid. This computation has often been accomplished in the
past by relying on either a total or substantial decoupling of the fluid and structural problems,
but the ever increasing emphasis on reliability, efficiency, and weight motivates the use of
precise strategies for the determination of the fluid and structural behaviour. Recent efforts in
this area indicate that a time-marching solution for the combined fluid and structure governing
equations is computationally feasible and may provide the necessary accuracy. The present
investigation essentially verifies this approach and makes available a time-marching technique
that fully resolves the fluid—structure interactions. As an illustration, the single airfoil flutter
problem is first analysed in detail. This is followed by an investigation of the nonlinearity in the
response of the airfoil. New insights thus obtained are presented and discussed.

( 1998 Academic Press
1. INTRODUCTION

THE ACCURATE PREDICTION OF FLOW-INDUCED VIBRATIONS in turbomachines is one of the
most important and challenging problems in the area of fluid—structure interactions.
The complex geometry of the bladed disks, the effects associated with the rotation of the
rotors, and the cascade structure of each rotor—stator stage are only some of the difficulties
encountered. This situation has quite naturally led to the introduction of simplifying
assumptions. In particular, the fluid forces on the blades have often been split into two
contributions (Chiang & Kielb 1993): the motion-dependent unsteady aerodynamic forces
and the gust-response unsteady aerodynamic forces. The forces belonging to the first group
are directly related to the structural deformations and modify the structural (no flow) mass,
damping, and stiffness matrices. They are considered in both the free vibration/flutter speed
determination and forced vibration problems. The forces that are in the second group
model the flow deflects that are associated with inlet distortions, wake disturbances
(from upstream stages), or potential disturbances. It is often assumed that these forces are
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632 I. JADIC E¹ A¸.
not coupled with the structural deformations so that they can be considered as an external
excitation to the combined fluid—structure system, i.e. as a travelling vortical gust. In
particular, models of the wakes of an upstream stage have been considered as a gust
convected with the mean flow (‘‘frozen gust’’), with a profile that is either fixed (Fleeter 1994;
Weaver & Fleeter 1994) or changing in a predetermined manner (Kemp & Sears 1955;
Majjigi & Gliebe 1984) to account, in particular, for the presence of the blades.

In this light, the primary goal of this investigation is to develop a simple, modular
time-marching strategy that accounts for the full fluid—structure interaction for both the
free vibration/flutter speed determination and forced vibration problems, including the
estimation of the fatigue life of the structure. Although some of the components of the
formulation may not be adequate in all situations, e.g. the aerodynamic computations rely
on the assumption of an attached flow, they can easily be replaced by more appropriate
prediction tools for the application considered. The interaction between a turbomachine
blade row and the passing fluid will be used to exemplify the approach as well as to illustrate
some of the shortcomings of the aforementioned modelling of wakes shed by upstream
stages as vortical gusts.

This paper is the first of a series of reports on this subject, and it concentrates
on the development of a time-marching technique where the full fluid—structure inter-
action effects are investigated. In order to demonstrate the viability of such a technique,
the flutter problem treated by Hall (1994) is used as a benchmark to verify the
present technique. In the process, it is shown that nonlinear effects that arise from
interactions between the flow, the wake and the airfoil are present in the problem
and that their neglect may not be justified in the context of a true fluid—structure interaction
problem. It will also be shown that these small nonlinear effects are not easily resolved
if an accurate and reliable data analysis technique of time series is not available.
The development of such a data analysis technique is crucial to the successful development
of a comprehensive method for the analysis of fluid—structure interaction problems, includ-
ing flutter. Once verified, the technique can be used to analyse a host of flow-induced
vibration problems, such as blade vibrations in turbomachines, and the assessment of their
potential for failure. Subsequent tasks of the present research will be reported in separate
papers.

2. TIME-MARCHING FORMULATION

The analysis of flow-induced vibration problems by time-marching strategies requires (i) the
modeling of the fluid, (ii) the prediction of the dynamic response of the structure, (iii) the
specification of the coupling between the fluid and the structure, (iv) the frequency domain
analysis of the response time histories, and (v) the assessment of the potential for failure. All
of these elements or modules must be included in the solution technique and each one of
them must be selected according to the specific application considered. The focus of the
present investigation on subsonic turbomachines has led to the formulation of these five
components. However, only the first four are briefly discussed below. The fifth will be
discussed in detail in a subsequent paper.

2.1. AERODYNAMIC MODELLING

The starting point of this analysis is the time-averaged Reynolds mean flow equations.
In writing down the governing equations, the flow is assumed to be incompressible,
two-dimensional and unsteady. Furthermore, turbulent diffusion is considered to be signifi-
cantly larger than molecular diffusion. Therefore, to the lowest order, the effect of molecular
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diffusion can be neglected. If a constant eddy viscosity l
t
is assumed, the Reynolds equations

are identical to the Navier—Stokes equations. The equations can then be normalized using
the reference velocity,º

=
, and the chord length, c, so that the Reynolds number, Re

t
is given

by º
=

c/l
t
. Thus simplified, the governing equations can be written as

$ · V"0. (1)

LV

Lt
#V ·$ V"!$P#Re~1

t
+ 2V, (2)

where V is the mean dimensionless velocity vector, P is the mean dimensionless pressure, t is
the dimensionless time and Re

t
"º

=
c/l

t
is the Reynolds number based on the eddy

viscosity l
t
. The oncoming flow is considered to be either a uniform shear flow or a uniform

flow with constant vorticity. Since the former can also be reduced to an equivalent uniform
flow with constant vorticity, the reference velocity º

=
can be taken as the uniform flow

velocity without loss of generality. In writing the governing equations in this form, it has
been tacitly assumed that the eddy viscosity is constant for both the oncoming flow and the
free vortex. The constant eddy viscosity assumption for the free stream is justified because in
a two-dimensional near-homogeneous turbulent flow, l

t
is approximately constant

(Batchelor 1953). In anticipation of the fact that, following Chorin (1973), the method of
fractional steps is used to handle the governing equations, it is reasonable to assume l

t
in the

vortex, to the lowest order, to be approximately constant also. The rationale for this
assumption is detailed below.

The mean pressure P can be eliminated by taking the curl of equation (2). Since
the mean vorticity is defined by x"$3V, an equation governing the transport of x is
given by

Lx

Lt
#V · $x"Re~1

t
+2x. (3)

The oncoming flow is two-dimensional and can be assumed to be made up of
three components superimposed on each other; a uniform flow, a piecewise continu-
ous distribution of vorticity (typical of that generated by a uniform shear) and concentrated
vortices. In a two-dimensional flow, the vorticity x is perpendicular to the plane of
the flow. This observation applies not only to a continuous distribution of vorticity,
but also to a concentrated one. In both cases, the vorticity can be represented by
infinite filaments perpendicular to the two-dimensional plane flow. If the circulation C is
defined as

C"Q V ·dl, (4)

where the integral is taken around a closed material curve drawn in the fluid, an integral
formula equivalent to equation (3) can be obtained (Batchelor 1967),

LC

Lt
"!l Q ($]x) ·dl. (5)

For an inviscid flow, equation (5) reduces to LC/Lt"0. This is Kelvin’s theorem and
simply states that C around any material closed curve in the flow field does not change
with time.
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In this study, the main interest is in the influence of an upstream source of vorticity, which
is approximated by a concentrated ‘‘travelling’’ vortex or by a series of vortices, on
a downstream blade (isolated or in a cascade). The mechanism of vorticity generation and
dissipation, given by the terms on the right-hand side of equations (3) and (5), is of
somewhat lesser importance than the convection of vorticity. Thus, the decoupling of the
convection and dissipative aspects proposed by Chorin (1973) could be used to handle
equations (3) and (5). According to this decoupling technique, the circulation C around
a given material curve remains unchanged during a small time step dt (fractional time step).
Furthermore, it is assumed that, during this time step dt, the flow behaves like an inviscid
‘‘conveyor’’ of the vorticity thus ‘‘frozen’’. Once this time step is consumed, the vorticity is
altered by diffusion. In mathematical terms, this can be written as

xli (t#dt)"xli (t)#V
o
(xli (t), ui

(t), t)dt, i"1, 2, 2 , N, (6)

where u
i
(t)"f (t) is the strength of the ith vortical element, xli is the position vector

of the ith vortical element, N is the number of vortical elements, and f (t) is a known
function which governs vortex diffusion. The suffix ‘‘o’’ attached to the velocity V empha-
sizes the fact that the convective velocity is generated by an inviscid flow. The set of
equations (6) is in fact an explicit finite difference form of the differential set of equations
which relate the position of a certain vortical element to the velocity of the inviscid flow at
that particular location. In this investigation Lamb’s (1932) viscous core model is used to
approximate f (t):

DVD"
Cl
2n

1

r Cl!expA
r2

4t
Re

tBD,
where Cl is the strength of the vortex.

Consistent with the above discussion, the method of fractional steps (Chorin 1973) is now
used to split (3) into the following set:

du
c

dt
"

Lu
c

Lt
#V ·$u

c
"0, (7a)

Lu
d

Lt
"Re~1

t
+2u

c
, (7b)

where u
c
and u

d
are the convective and diffusive part of the vorticity, respectively. It follows

that u
d
is the approximate solution to equation (3). In other words, the path of the vortex is

solely determined by equation (7a) while the diffusion of the vortex is obtained by solving
equation (7b). Therefore, in this treatment, vortex diffusion is assumed to have little effect on
its path. In view of this, it is reasonable to assume l

t
in the vortex, to the lowest order, to be

approximately constant.
The flow around the structure, which is simulated by a distribution of sources and

discrete vortices, is solved using a Boundary Element Method for inviscid incompressible
flow. The boundary condition requires the flow to be tangent to the surface of the structure.
The far-field boundary condition is given by V

o
"V

=
#Vu , where Vu is the rotational part

of V
o
. In this study º

=
is taken to be the magnitude of V

=
. Solving the given boundary

equations yields the source and vorticity distributions on the structure surface. Then,
successively, the flowfield velocities and pressure distributions are calculated. Further
details concerning this formulation can be found in Yao et al. (1989, 1995) and Yao & Liu
(1994). Once the unsteady velocity, V, and unsteady pressure, p, fields are known, the
unsteady forces on the structure can be determined.
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2.2. STRUCTURAL DYNAMIC MODELLING

The dynamic response of structures is in general governed by a set of partial differential
equations, wherever the mass is continuously distributed, and/or ordinary differential
equations that describe the behaviour of lumped masses. Although these equations are often
assumed to be linear, nonlinear terms can appear due to geometric factors (large rotations,
intermittent contact of shrouds, etc.) or to the material properties of the structures (large
deformations, nonelastic behaviour).

In the context of airfoils and turbomachine blades, the simple two-degree-of-freedom
structural model shown in Figure 1 has often been assumed. Since the objective is
to develop a technique to analyse fluid—structure interactions, there is no loss of
generality in starting with an accepted simple structural model. The modelled equations of
motion are:

mḧ!ma cos h ḧ#k
h
h#ma sin h hR 2"¸, (8a)

Iḧ!ma cos h ḧ#khh"M, (8b)

where h is the plunging displacement of the blade, which models the bending deformation,
and h is the pitching angle of the blade, which is representative of torsional deformation.
The coefficient a is the distance between the elastic axis and the center of mass, m is the mass
of the blade section with a unit spanwise length, I is the moment of inertia of the blade
section, k

h
and kh are the bending and torsional stiffnesses, respectively, and ¸ and M are the

aerodynamic lift and moment acting on the blade. In general, (8a) and (8b) are nonlinear.
However, in anticipation of the fact that a linear counterpart of (8) will be solved later, their
linearized version is also included here for reference. The corresponding linear version is

mḧ!maḧ#k
h
h"¸, (9a)

Iḧ!maḧ#khh"M. (9b)

Furthermore, consistent with the linear assumption made to deduce (9a, b) the ¸ and M on
the right-hand side of (9a, b) should also be linearized. Their linearized forms are given in the
following.
Figure 1. Structural dynamics model.
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2.3. FLUID-STRUCTURE COUPLING

The flow field and the structural response are coupled to each other through the tangency
boundary condition (effect of structural response on the flow field) and the aerodynamic
forces (effect of the flow field on the structural response). Specifically, for the inviscid flow
considered here, the flow field is required to satisfy, at every point of the surface of the
structure in contact with the fluid, the tangency condition

(V
o
!V

S
) · n"0, (10)

where V
o

and V
S

are the local velocities of the fluid and the structure, and n is the local
normal to the contact surface. Note that this boundary condition is in general nonlinear
since both the velocities and the direction of the normal depend on either the flow field
variables (e.g., strengths and locations of the vortices) or the structural response.

In the structural modelling considered here, the flow field affects the structural response
through the aerodynamic forces ¸ and M in equation (9), which can be evaluated from the
pressure distribution,

C
p
"

2(p!p
=
)

oº2
=

"

1

º2
=
C!2

L/
Lt

#»2
RD, (11)

where p is the unsteady pressure on the blade surface, p
=

is the reference pressure, o is the
fluid density, / is the velocity potential, V

R
is the resultant blade surface velocity taking into

account all contributions including the freestream velocity, the blade motion, the velocity
induced by the source and vorticity distributions, the travelling and the wake vortices. Once
p is known, the ¸ and M can be determined by integrating p around the surface of the airfoil.
A lift and moment coefficient, C

L
and C

M
, can be calculated from the following relations:

C
L
"

¸

(1
2
)oº2

=
c
"!Q [!C

p
(s)n

x
(s) sin a#C

p
(s)n

y
(s) cos a] ds, (12)

C
M
"

M

(1
2
) oº2

=
c2
"Q M[x(s)!x

P
]C

p
(s) n

y
(s)![y (s)!y

P
]C

p
(s)n

x
(s)N ds, (13)

where s is the arc length of the blade surface contour, n
x
, n

y
are the x, y components of the

outward normal unit vector on the blade surface, respectively, x
P
and y

P
are the coordinates

of the blade mass center, and a is the angle of attack. The corresponding linear version is

C
L
"!Q [!C

p
(s)n

x
(s)a#C

p
(s)n

y
(s)] ds, (14)

C
M
"Q [x (s)!x

P
]C

p
(s)n

y
(s) ds. (15)

2.4. TIME HISTORY ANALYSIS

The direct result of the application of a time-marching strategy to a fluid—structure
interaction problem is a series of time histories of the evolution of the fluid flow character-
istics, such as strengths of vortices, forces on the structure, and of the structural responses.
Although some of the failure criteria that can be considered are expressed in terms of the
values of the response, e.g. failure occurs when a displacement or stress exceeds a specified
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threshold, many of them are formulated in terms of the frequency domain aspects of the
response. Flutter and fatigue are failure mechanisms that fall in this second category, flutter
occurs when a purely harmonic, undamped response of the structure arises from its
interaction with the fluid, while fatigue is based on the damage generated by each harmonic
component present in the time histories of the stresses.

Classically, the transition from the time domain to the frequency domain has been
accomplished by relying on the fast fourier transform (FFT) technique. However, this
procedure has a serious shortcoming when considering its application to the determination
of the flutter speed and to the estimation of the fatigue life of lightly damped structures. The
difficulty lies in the intimate relation between the resolution of the FFT and the number of
points available in the time series. If n

r
denotes the number of available samples of a specific

variable and Dt is the sampling time interval, then the FFT method will yield n
r
frequency

response estimates in the domain [!1/2Dt, 1/2Dt] so that its resolution is equal to
Df"(1/n

r
Dt)Hz. However, most modern structures are very lightly damped, even in the

presence of the fluid, so that their frequency response functions (or transfer functions)
exhibit extremely sharp peaks centered at the natural frequencies f

i
and of bandwidths of

the order of 2f
i
f
i
, where f

i
is the associated damping ratio, typically of the order of 0)01 or

less. Since it is the frequency content of the response within these small bands that dictates
the fatigue life of the structure, it is necessary to select Df;2f

i
f
i
, say Df+(2f

i
f
i
)/6, to

obtain an accurate estimate of the damage created in the ith mode. The value of the
sampling time Dt is often prescribed by the physics of the problem to be less than a certain
limit. On the other hand, the condition Df+(2f

i
f
i
)/6 requires a long time history of the

response. In the context of a time-marching solution of the coupled fluid—structure
governing equations, long records imply a tremendously large computational effort. A
similar situation is encountered in connection with the determination of the flutter speed
which occurs when the damping ratio in one mode of the combined fluid—structure system
equals zero.

To circumvent these difficulties, an alternative approach based on autoregressive moving
average (ARMA) discrete models (Marple 1987; Mignolet & Red-Horse 1994) that have
been used for the evaluation of the frequency characteristics of vibrating structures, is
considered. In developing the ARMA identification/spectral estimation technique, it is
convenient to first consider a linear multi-degree-of-freedom dynamic model of the form (it
will be shown later that nonlinearities are also readily accounted for).

M
45
X®

45
(t)#K

45
X

45
(t)"F (t), (16)

where X
45
(t), M

45
and K

45
denote the time-dependent vector of the structure, and its mass and

stiffness matrices, respectively. Then, it can be shown that the sampled response vector
X3

n
"X3

45
(nDt) admits the representation (Mignolet & Red-Horse 1994)

X3
n
"!

s
+
k/1

AI
k
X3

n~k
#

s~1
+

k /0

BI
k
F3
n~k

#

s
+
k/0

CI
k
W3

n~k
, (17)

where

X3
n
"X3

45
(n Dt) and F3

n
"F3

45
(n Dt), n"1, 2, 3, 2 (18)

are the noise (computational inaccuracies/measurement errors) corrupted values of the
response and excitation time histories, respectively, and W3

n
is a noise vector. In the present

analysis, the system includes the structural variables (h and h of the blade) and the
aerodynamic degrees of freedom, which are not directly observed. Note that this combined
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fluid—solid system is not subjected to any external excitation, so that the second term on the
right-hand side of equation (17) disappears. Finally, since the only source of error lies in
numerical inaccuracies, this relation could be further simplified by just considering the first
term in the last sum. The result is

X3
n
"!

s
+

k/1

AI
k
X3

n~k
#CI

0
W3

n
, (19)

which represents a purely autoregressive (AR) model. The parameter s"2(N
!%30`45

)/d where
N

!%30`45
is the total number of aerodynamic and structural degrees of freedom and d is the

number of observed degrees of freedom. Here, d"2 if only the structural responses h and
h are observed or d"4 if, in addition to these variables, the values of the aerodynamic
coefficients C

L
and C

M
are also considered.

The ARMA spectral estimation/identification technique requires first the determination
of the matrix coefficients AI

k
and CI

0
that yields a ‘‘best’’ fit of the computed time series h (t)

and h (t) . This is achieved by maximizing the likelihood function of the observed time series
(Mignolet & Red-Horse 1994). This condition yields under the assumption of a Gaussian
distribution of the noise samples W3

n
the following linear set of algebraic equations for the

parameters AI
k
and CI

0
:

s
+

k/ 1

AI
k
R

xx
(k!r)"RT

xx
(r), r" 1, 2, 2 , 3, (20)

where ( )T denotes the transpose of a matrix and

R
xx

(0)#
s
+
k/1

AI
k
R

xx
(k)"

2n
Dt

CI
0
CI T

0
. (21)

Note in the above relation that, for simplicity and without loss of generality, the matrix
CI

0
can be assumed to be lower triangular so that it is obtained by the Cholesky decomposi-

tion of the left-hand-side term. Further, the correlation matrix function R
xx

(k) can be
evaluated as

R
xx

(k)"
1

N
4!.

+
n

XI
n~k

XI T
n
, (22)

where N
4!.

is the total number of samples in the time histories of the response XI
n
and the

summation over n extends over all available samples. Once the model parameters AI
k
and

CI
0

have been computed, the spectral matrix of XI
n
can be estimated for any frequency u as

S
xx

(u)"AId#
s
+
k/1

AI
k
e*ukDtB~1CI

0
CI T

0AId#
s
+
k/1

AI T
k
e~*ukDtB

~T
, (23)

where I
d
is the d]d identity matrix.

The above autoregressive modelling can also be used in connection with experimental
data provided that the signal-to-noise ratio is sufficiently large to consider only one
term in the last sum appearing in equation (17). In the negative, a full ARMA modelling
strategy that leads to a nonlinear algebraic set of equations for the matrix parameters
AI

k
and CI

0
must be used. The solution of this nonlinear algebraic set of equations can be

obtained in a series of linear steps [see Mignolet & Red-Horse (1994) for a complete
presentation].
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In the context of both AR and ARMA models, it has been shown (Mignolet & Red-Horse
1994) that the roots z

l
of the equation

det AId#
s
+
k/1

AI
k
z~k
l B"0, (24)

are related to the natural frequencies u
l
and the damping ratios f

l
of the system, as

u
l
"

1

Dt
Dln z

l
D and f

l
"!

1

u
l

lnDz
l
D. (25)

The mode shapes can also be computed from the parameters AI
k
. Specifically, the lth mode

shape is proportional to the eigenvector of the complex matrix I
d
#+s

k/1
AI

k
z~k
l

corres-
ponding to its zero eigenvalue (Mignolet & Red-Horse 1994).

The knowledge of the natural frequencies, damping ratios and mode shapes of the
different modes present in the response of the system allows the determination of the
magnitudes, a

l
, l"1, 2, 2 , of these different components. Specifically, denoting by

/(l)
j

the jth element of the lth mode, the amplitudes a
l
can be obtained by minimizing the

representation error

e"+
n, j
CXI n, j!+

l

a
l
/(l)
j

g
l
(nDt)D

2
, (26)

where XI
n, j

is the jth component of the response vector at time nDt, and g
l
(t) represents the

free response of the lth mode at time t which is a linear combination of the functions

g
ls
(t)"exp(!f

l
u

l
t) sin (u

l
J1!f2

l
t), (27a)

g
lc
(t)"exp(!f

l
u

l
t) cos (u

l
J1!f2

l
t). (27b)

3. COMPUTATIONAL ASPECTS

The solution of the convection step is obtained through a time domain boundary element
method for unsteady flows as proposed by Yao et al. (1989) and Yao & Liu (1994). The
potential flow field is solved by an extended high-order boundary element method derived
from a modified Morino scheme. Details of the scheme are given by Morino (1974), Morino
& Kuo (1974), Bristow (1997) and Shen & Proft (1980). However, the scheme used in the
present study is based on that developed by Shen & Proft (1980). In the present approach,
a high-order boundary element method which uses cubic spline curved panels and linear
source and vorticity distributions (Shen & Proft 1980) is adopted. The vortical motion is
governed by an Euler-type equation which is solved in a Lagrangian domain. A number of
discrete vortex tracking techniques in the Lagrangian frame have been proposed by such
researchers as Giesing (1968), Chorin (1973), Basu & Hancock (1978), Chow & Huang
(1985), Kim & Mook (1986), and Lee & Smith (1987). These techniques are adopted for the
handling of the travelling vortices and the wake and their interaction with the blades. The
diffusion step of the solution is obtained by considering the turbulent diffusion of the vortex
core. If the path of the vortex is assumed to be unaffected by viscous effects in the lowest
order, then Lamb’s (1932) viscous core vortex model can be used to simulate turbulent
diffusion within the vortex.

However, in this case, the viscosity in Lamb’s model is replaced by l
t
the eddy diffusivity

of the turbulent flow.
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The determination of the structural response starts by the computation of the aerody-
namic forces and moment according to equations (12) and (13), where the integrals are
performed numerically using a Gaussian quadrature (Carnahan et al. 1969). Then, the
dynamic response of the blades can be determined by numerically solving equations (8a)
and (8b). Specifically, the system of second-order nonlinear equations (8) is first transformed
into a system of nonlinear first-order equations

dY
k

dt
"F[t, ½

k
(1), ½

k
(2), ½

k
(3), ½

k
(4)], (28)

where

½
k
(1)"h (kDt), ½

k
(2)"h5 (kDt), ½

k
(3)"h (kDt), and ½

k
(4)"hR (kDt) (29)

For each time step, equation (28) is integrated using different predictor-corrector methods
according to the accuracy required. For example, if a second-order accuracy, O (Dt2) , is
imposed, the corresponding formulae for the predictor and corrector are given by

Y0
k`1

"Y
k
#F[t

k
, ½

k
]Dt, (30)

for the predictor step and

Y1
k`1

"Y
k
#[F[t

k
, Y

k
]#F[t

k`1
, ½0

k`1
]]

Dt

2
, (31)

for the corrector step. A detailed description of this scheme is given by Rice (1993).
The fluid—structure interactions are calculated according to the scheme shown in

Figure 2. At each time step, an estimate of the structural response is obtained by integrating
the structural dynamics equations under the assumption that the aerodynamic loading is
constant for the time step t

i
to t

i`1
. This estimate of the structural response is used to update

the boundary conditions for the flow field calculations. Once the aerodynamic coefficients
are estimated for the new time t

i`1
, the variations of the right-hand function F in the system

of equations (16) can be linearized. This assumption enables the calculation of the structural
response which, in turn, yields a different surface pressure distribution and a new loading.
The procedure is iterated according to Figure 2 until a prescribed precision on h and h (10~6

relative error between successive iterations) is attained. Thus, the iteration at every time step
allows the true flow-induced vibrations of the blades to be determined.

In terms of computational effort, the present formulation does not require excessive
computer resources. For example, the calculations for the case of the NACA 0012 airfoil
with 35 panels and 1000 time steps with Dt"0)05 take less than 1min of CPU time in
a RISC 6000 workstation. The time series thus obtained provide sufficient information for
the proper identification of the modal frequencies and damping coefficients. For the typical
1000 sample time series mentioned above, the ARMA method takes approximately 2 min of
CPU time to complete the analysis. The whole calculations therefore take a total of 3min in
a RISC 6000 workstation.

4. FLUTTER ANALYSIS

The free vibrations of a thin airfoil have recently been analysed by Hall (1994) by
formulating the response of the entire system (airfoil and fluid) as a set of homogeneous
linear differential equations. The natural frequencies and damping ratios of the airfoil in the
presence of the fluid are determined by solving a linear eigenvalue problem. This problem is



Figure 2. Integrated aerodynamics-structural dynamics flow chart.
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reconsidered here, first to confirm the adequacy of the time-marching technique for the
prediction of the natural frequencies and damping ratios of the structure as well as of the
flutter speed, and then to investigate the effect of nonlinearities present in the aerodynamic
and structural formulations on the response of the fluid—structure system.

To validate the accuracy of the time-marching strategy, and in particular of its time
history analysis/identification component, it was decided to march in time the incremental
relations derived by Hall and to compare the corresponding estimates of the natural
frequencies (u/ua) and damping ratios, Re(j) , with their counterparts obtained by Hall
from the associated eigenvalue problem. The results of this comparison are depicted in
Figures 3 and 4. In these figures, three sets of calculations are compared: (i) Hall’s (1994)
results, (ii) the results obtained by time-marching Hall’s formulation (denoted as ‘‘Hall time



Figure 3. Comparison with Hall’s (1994) frequency calculations; imaginary part of the eigenvalues.

Figure 4. Camparison with Hall’s (1994) damping ratio calculations; real part of the eigenvalues.
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marching’’), and (iii) the present time-marching results (designated as ‘‘Present’’). The results
for the Hall’s case as well as the Hall time-marching case are for an inviscid fluid. On the
other hand, the calculations using the present method are for a NACA 0012 airfoil with the
structural model shown in Figure 1 and the following parameters: Re"R, m"20)0kg/m;
I"1)25 kgm; k

h
"1)8N/m2; kh"1)25N; a"0)1m and c"1m. These parameters are

consistent with those considered by Hall (1994). The u/ua andRe (j) were obtained from an
order 100 autoregressive model, AR(100), of the structural responses h, h, C

L
and C

M
. This

model accounts for 200 possible modes of response, two of which are required for the
structural aspects of the problem. The large number of modes that can be used for the
aerodynamic modelling (198) compares well with the 220 modes used by Hall.

Clearly, the agreement between the first two sets of curves is excellent at all speeds
considered, thus indicating that the ARMA technique very accurately recovers the natural
frequencies and damping ratios of the combined fluid—structure system. In this context, note
further that the estimation of the characteristics of the highly damped mode near and past
the flutter point is a very challenging identification problem since this mode disappears after
only very few cycles and its frequency is very close to the dominant mode which is
characterized by a very small, positive or negative, damping ratio. Notwithstanding these
challenges, the ARMA technique also provides reliable estimates of the natural frequency
and damping ratio of this overshadowed mode. Furthermore, it can be seen that the present
results match very closely the values obtained by Hall (1994), thereby validating the present
procedure.



Figure 5. Linearity check at »" 1)8 for the NACA 0012 airfoil.

Figure 6. Linearity check at »" 2)02 (flutter) for the NACA 0012 airfoil.
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The existence/absence of nonlinear interactions in a system can be assessed from the time
histories of its free response. Indeed, if the system is linear, its free response depends linearly
on the initial conditions and the principle of superposition holds, i.e. the response to the set
of initial conditions IC1#IC2 is the sum of the responses obtained from initial conditions
IC1 and IC2 computed separately. To remove any potential nonlinear effect arising from
the trigonometric functions appearing in the structural dynamic equations of motion (8), the
linear set of equations (9) have been used in the ensuing computations. The comparison
suggested above is depicted in Figure 5, where the results were obtained using the present
method, the linearized set of equations (9) and a dimensionless velocity »"1)8. The initial
conditions IC1 and IC2 were defined as Mh, hR , h, hR N"M0, 0, 0)1, 0N and Mh, hR , h, hR N"
M0)1, 0, 0, 0N, respectively. No difference between the bending response corresponding to
IC1#IC2 and the sum of the displacements for IC1 and IC2 can be observed, thereby
suggesting that the system is essentially linear. A second set of results were obtained at
»"2)02, right above the flutter point, and is shown in Figure 6. Note that there is a slight
discrepancy between the two curves. This implies that a small nonlinear effect is present.

To confirm the existence of nonlinearity in the fluid—structure system and to assess its
characteristics, a comparison between the structural response obtained with initial condi-
tions (IC1#IC2)/10 and the sum of the displacements corresponding to IC1/10 and
IC2/10, respectively, has been performed. The results of these computations (not shown here
for brevity), which indicate that there is almost no discrepancy between the two curves,
confirm the initial condition dependence and thus the nonlinearity of the system. Finally,
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this improved matching at a reduced response level also demonstrates that the nonlinearity
of the system can be attributed to powers larger than 1 of certain variables, so that a forced
response of this system would be expected to display superharmonics of the excitation
frequency.

The identification of the source of the nonlinear behaviour observed in Figure 6 was
accomplished by performing a series of linearizations of the fluid governing equations,
[Equations (4)—(6)], and the fluid—structure boundary condition (3). The structural equa-
tions of motion have already been linearized for the results shown in Figure 6. This effort
revealed that although there are several nonlinear contributing terms, the discrepancy
shown in Figure 6 comes almost exclusively from the fluid—structure coupling exhibited in
the tangency condition (3). More specifically, the nonlinearity was observed to be associated
with the presence of trigonometric functions of the time-varying angle of attack of the airfoil
in both equation (3) and the system of equations yielding the strength of the source
distributions on the airfoil (Yao et al. 1995). In fact, after linearizing these terms according
to sin a+a and cos a+1, an almost perfect match was found between the response
associated with the initial conditions IC1#IC2 and the sum of the responses correspond-
ing to IC1 and IC2 computed separately (Figure 7).

It should be noted that the geometry of the airfoil seems to be of secondary importance,
as suggested by the good agreement between the present investigation, based on a NACA
0012 airfoil, and Hall’s (1994), based on a flat plate model. The increased level of interaction
between the fluid and the structure that exists around the flutter speed can also be noted
from the wake path and structure. Indeed, shown in Figures 8 and 9 are the vortex wake
Figure 7. Linearity check at »" 2)02 (flutter) with linearized boundary conditions for the NACA 0012 airfoil.

Figure 8. Wake configuration (t"300) at »"1)8 for the NACA 0012 airfoil.



Figure 9. Wake configuration (t"300) at »"2)0 for the NACA 0012 airfoil.
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structures obtained at time t"300 at the dimensionless velocities »"1)8 and »"2)0.
Note the almost perfect straight line trajectory of the vortices obtained below flutter (Figure
8). At the flutter speed (»"2)0), however, the fluid—structure system resonates and all of its
characteristics exhibit undamped oscillations, as confirmed in Figure 9 for the wake. This
result is in sharp contrast with classical flutter analyses that prescribe a straight line wake in
all flow conditions. The correct prediction of the vortex path is of course of primary
importance if the response of another structure located downstream of the airfoil is to be
predicted, as encountered for example in turbomachinery applications.

The effect of Re, or in this case, turbulent diffusivity, on the fluid-structure inter-
actions is assessed next. Additional calculations using the present method were carried
out assuming Re"10,000, 1000, 300, 200 and 100. The parameters used for these
calculations are identical to Hall’s case at »"1)8 with initial conditions given by
IC1#IC2. These calculations are compared with the results shown in Figure 3 and 4
for Re"R and are plotted in Figure 10. Parts (a) and (b) of Figure 10 show the bend-
ing and pitching deformation histories. At »"1)8, Hall (1994) predicted a negative
damping. This finding is also realized when the present method is used to carry out the
calculations assuming Re"R (potential flow), or a non-diffusive vortex core. The results
of the Re(j) and the u/ua ratio for all Re calculated are listed in Table 1. It can be seen
that reducing Re leads to a decrease in damping; i.e., the Re(j) goes from negative to
positive. In other words, a decrease of Re destabilizes the fluid—structure system. Part (c)
of Figure 10 shows the behaviour of the downwash, w/w

0
(normalized by the potential

flow value) generated by a diffusive vortex travelling from the trailing edge of the airfoil
at freestream velocity. These results show that a diffusive core generates a different
induced velocity field behind the airfoil, which in turn modifies the aerodynamic damping
properties.

In order to explain the relationship between aerodynamic damping and Re, it is probably
best to start from Wagner’s function, which describes the response of an airfoil to a step
function input. This response is known to be gradual in contrast with the response
computed under the quasi-steady assumption with a similar step function input. The
difference between the two models is given by the presence/absence of flow-propagated
vortices generated at the trailing edge, which represent the flow memory. Wagner’s function
is characteristic of the calculations shown in Figure 10 under the potential flow assumption,
or Re"R. In this case, the vortices do not diffuse and the wake is propagated to
downstream infinity. The quasi-steady situation corresponds to the limiting case of Re " 0,
where the diffusivity of the vortices is so large that they disappear immediately after



Figure 10. Reynolds number effects on (a, b) structural vibrations and (c) wake behaviour at »"1)8 for the
NACA 0012 airfoil.

TABLE 1

Variation of the Re(j) and the u/ua ratio with Re for
the NACA 0012 airfoil at »" 1)8

Re Re(j) u/ua

R !0)064 0)758
10000 !0)064 0)748
1000 !0)053 0)736
300 !0)017 0)732
200 #0)015 0)728
100 #0)047 0)727
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leaving the trailing edge. In other words, no wake is present and the flow cannot
‘‘remember’’ what happened at previous time moments. It can be seen that the presence of
the wake leads to a lag in the response which is in fact the aerodynamic damping. Therefore,
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it can be deduced from Figure 10(c) that as Re is decreased, the effect of the wake is
diminished over an increasingly larger area. This leads to a local ‘‘amnesia’’ of the flow,
which approaches the undamped instantaneous response characteristic of the quasi-steady
flow assumption. Thus, at lower Re, the response of an airfoil to a step function becomes less
damped.

5. PREDICTIONS OF LIMIT CYCLE OSCILLATIONS (LCO)

The time marching of both the fluid and structural dynamic equations allows not only the
determination of the flutter speed but also permits the prediction of the post-flutter
behaviour of the system; in particular, the source of nonlinearity in the post-flutter regime.
Also, it is possible to examine whether the response will grow in time until a steady-state
behaviour is reached and to determine the amplitudes of the corresponding limit-cycle
oscillations (LCO). Furthermore, the present technique allows the consideration of nonlin-
earity in the response of the structure as encountered, for example, in connection with dry
friction (stick-slip) mechanisms and/or the presence of gaps (free play) or discontinuous
contacts, e.g. shroud contact in turbomachine blades. In order to illustrate these points, four
cases that simulate these situations approximately are considered. The results and insights
thus gained from the analysis are discussed below.

Case (a). As a first test of the capabilities of the present method, the response of the
structural system shown in Figure 1 with the nonlinear equations of motion given by
equations (8a, b) was investigated just above the flutter speed (»"2)02). Shown in
Figure 11 are the response time history of bending (plunging) deflection (h versus t) and the
corresponding phase plane plot (hR versus h) which clearly indicate that the amplitude of the
oscillations reaches a steady state level at a dimensionless time t+ 200. The limit cycle is
seen to be very close to a pure circle, demonstrating that flutter occurs only along one mode
and that the harmonics of the fundamental frequency are not significantly present in the
response. In fact, an ARMA analysis of the time histories of the response shows the
existence of small but detectable second, third, and higher harmonics which are clearly
associated with the cosine and sine terms discussed in the foregoing. Note that a totally
analogous situation is observed in connection with the torsional (pitching) response angle h.
For brevity, the results are not shown.

Case (a@). A further attempt to identify the source of nonlinearity is to repeat the
calculations of Case (a) using the linear set of structural dynamic equations (9a, b).
Thus, there are no nonlinearities introduced by the airfoil structure and any nonlinearities
shown in the results can be attributed to those deriving from the fluid—structure inter-
actions. Again, the calculations were carried out with »"2)02, just above the flutter
speed. The results for h and dh/dt are shown in Figure 12. It can be seen that a circular
LCO is again obtained, thus indicating that flutter occurs only along one mode and that
the harmonics of the fundamental frequency are not significantly present in the response.
Furthermore, the amplitude level of h has only slightly increased, by approximately
20%, thereby demonstrating that, in the fluid—structure system, the strongest nonlinearity
is in fact derived from the fluid—structure interactions and not from the structure.
Further evidence in support of this conclusion can be seen from a comparison of the
time histories of h for Cases (a) and (a@). These are shown in Figure 13. It is seen that both
traces approach a LCO behaviour; however, consistent with the results of the bending
deformation analysis, it is found that the amplitude of h for Case (a@) is higher than that of
Case (a), thus indicating that structural nonlinearities further damped the amplitudes of the
oscillations.



Figure 11. LCO for Case (a) : bending response.
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Case (b). The response of nonlinear structural systems to the oncoming flow has been
studied on the basis of the modified equations of motion

mḧ!ma cos h ḧ#k
h
h#ma sin h hR 2#F

h
"¸, (32a)

Iḧ!ma cos h ḧ#kh h#Fh"M, (32b)

where F
h

and Fh are nonlinear functions of h, h, and their first derivatives. The values
of the parameters m, a, I, k

h
and kh were kept the same as in the previous numerical

results. The potential effects of a rub (dry friction) between the airfoil and another
structure, that are at rest separated by gaps h

0
and h

0
, were investigated by introducing the

nonlinear terms
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Figure 12. LCO for Case (a@) : bending response.
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where the parameters k
h
and kh are the dimensionless coefficients of friction associated with

the bending and torsional motions, respectively. To exemplify the effects of such a nonlinear
damping mechanism, the values h

0
"0)03c, h

0
"0)06, k

h
"0)0015 and kh"0)002 were

selected and the response of the fluid/structure system was computed until time t"300.
Shown in Figure 14 are the response time history of the bending deflection and the
corresponding phase-plane plot. These figures again indicate the rapid convergence of the
response of the system to a limit-cycle oscillation of magnitude approximately 40% smaller
than the one exhibited by the original system (Figure 11). This reduction of the amplitude of
response has de-emphasized the role of second, third and higher harmonics of the response,
which are associated with the trigonometric functions of the angle of attack, as discussed
above, and are of aerodynamic origin. However, the symmetrical nonlinearity of the
structural behaviour specified by equations (33a, b) yields a significant contribution of all
odd harmonics the presence of which has been confirmed by an ARMA analysis of the
response time histories.

Case (c). As a final example of structural nonlinearity, it was assumed that the
structure is undamped but is characterized by a bilinear stiffening behaviour. That
is, the model is of the form of equations (8) with stiffnesses k

h
and kh that vary with the

amplitude of response. Such governing equations can be written in the form of equation (29)



Figure 13. h time history for (i) Case (a) and (ii) Case (a@).
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with
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where h
0

and h
0

are the threshold values at which the bending and torsional stiffnesses
change. To exemplify the effects of such a structural nonlinearity, the high-amplitude
additional stiffnesses k@

h
and k@h were selected to be 15 and 5%, respectively, larger than their

low amplitude counterparts k
h
and kh, corresponding to the ‘‘soft system’’, which were set to

their prior values in Cases (a) and (b). Further, the threshold values were chosen as
h
0
"0)03c and h

0
"0)06 and the velocity of the oncoming flow was selected to be the same

as before (»"2)02), slightly above the flutter point.
Shown in Figure 15 are the response time history of the bending deflection and the

corresponding phase plane plot which reveal, as in the other two cases, that the system
reaches a steady-state situation. Note, however, that the amplitude of these limit cycle
oscillations is approximately half of its corresponding value for the original system. In fact,
it can be seen from Figure 15 that the bending deformation, h, barely exceeds the threshold



Figure 14. LCO for Case (b) : bending response.
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value h
0
. Since a similar situation is encountered in connection with the torsional response,

h(t) , it is concluded that the change of stiffness physically limits the response to amplitudes
that are only slightly larger than the threshold values h

0
and h

0
.

This behaviour can be understood as follows. As shown in Figure 15, the initial values of
h and h are below their corresponding thresholds. Since the flow velocity is above the flutter
speed for the ‘‘soft system’’, its response will increase with time until the amplitude of
response exceeds the threshold values. At this point, the system switches to ‘‘stiff’’ and the
flutter speed becomes higher than the existing freestream velocity. The ensuing response will
then consist of damped exponentials as seen in Figure 5, and will rapidly fall below the
threshold values. In this manner, the maximum amplitude reached by the system can only
be slightly above the threshold at which the system switches from ‘‘soft’’ to ‘‘stiff’’, as
observed in Figure 15.

The important changes in the magnitudes of the limit cycle oscillations (compare
Figures 14 and 15 with Figure 11) when only small nonlinear effects are introduced
in the structural model of the system may shed some light on the difficulties encount-
ered in some investigations (Meijer & Cunningham 1995) in predicting accurately
the amplitude of the limit cycle oscillations on the basis of a purely aerodynamic nonlin-
earity.



Figure 15. LCO for Case (c) : bending response.
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6. CONCLUSIONS

In this paper, a complete methodology for the analysis of flow-induced vibrations has
been presented. This approach included five specific elements: (i) the modelling of the fluid,
(ii) the prediction of the dynamic response of the structure, (iii) the specification of the
coupling between the fluid and the structure, (iv) the frequency domain analysis of the
response time histories, and (v) the assessment of the potential for failure. Computational
strategies to accomplish the first four tasks have been presented in detail. This paper
concentrates more specifically on flow-induced vibrations encountered in a single
blade/airfoil. Application of these techniques to investigate the free vibration and flutter
speed determination of a single blade/airfoil has been carried out. Specifically, the following
results have been obtained.

(a) The nonlinear character of the fluid—structure interactions associated in particular
with the flow tangency condition is properly accounted for and produces significant
changes in the response of the system in the neighbourhood of the flutter speed but appears
to have only a small effect below this value. Similarly, the path of the wake shed from the
airfoil is found to have a definite curvature when the flow velocity is comparable to the
flutter speed but not at lower regimes.

(b) The fully nonlinear character of the analysis performed permits the prediction of the
post-flutter behaviour of the system, including the existence and amplitudes of limit-cycle
oscillations for both linear and nonlinear structural models of the airfoil. In this regard, it
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was observed that the inclusion of small nonlinear terms in the description of the structure
can lead to large changes in the amplitudes of the limit cycle oscillations. This result
demonstrates the importance of properly accounting for such phenomena as free play, rub
between parts, and possible stick-slip mechanisms in the structural modelling.

(c) The ability to resolve these characteristics depends, to a great extent, on the time-series
analysis technique employed. It is shown that the conventional FFT method is not
appropriate but that an alternative approach based on autoregressive moving-average
(ARMA) discrete systems performs extremely well.

(d) The time-marching technique is able to account for the fluid-structure interaction
effects properly, including the interactions between the oncoming flow, the structure and the
wake shed by the structure. Therefore, it is very suitable for the analysis of the general class
of flow-induced vibration problems.
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BËLANGER, F., PAI® DOUSSIS, M. P. & DE LANGRE, E. 1995 Time-marching analysis of fluid-coupled systems with
large added mass. AIAA Journal 33, 752—757.

BRISTOW, D. R. 1977 Recent improvements in singularity methods for the flow field analysis about two-
dimensional airfoils. AIAA Paper 77—641.

CARNAHAN, B., LUTHER, H. A. & WILKES, J. O. 1966 Applied Numerical Methods. New York: Wiley.
CHIANG, H.-W. D. & KIELB, R. E. 1993 An analysis system for blade forced response. ASME Journal of

¹urbomachinery 115, 762—772.
CHORIN, A. J. 1973 Numerical study of slightly viscous flow. Journal of Fluid Mechanics 57, 785—796.
CHOW, C. Y. & HUANG, M. K. 1985 Unsteady flows about a Joukowski airfoil in the presence of moving vortices.

AIAA Paper 85-0203.
FLEETER, S. 1994 Forced response unsteady aerodynamic experiments. International Journal of ¹urbo and Jet

Engines 11, 177—192.
GIESING, J. P. 1968 Nonlinear two-dimensional unsteady potential flow with lift. Journal of Aircraft 5, 135—143.
HALL, K. C. 1994 Eigenanalysis of unsteady flows about airfoils, cascades, and wings. AIAA Journal 32, 2426—2432.
JONES, K. D. & PLATZER, M. F. 1996 Time-domain analysis of low-speed airfoil flutter. AIAA Journal 34,

1027—1033.
KEMP, N. H. & SEARS, W. R. 1955 The unsteady forces due to viscous wakes in turbomachines. Journal of

Aeronautical Sciences 22, 478—483.
KIM, M. J. & MOOK, D. T. 1986 Application of continuous vorticity panels to general unsteady incompressible

two-dimensional lifting flows. Journal of Aircraft 23, 464—471.
LAMB, S. H. 1932 Hydrodynamics, 6th edition. Cambridge: Cambridge University Press.
LEE, D. J. & SMITH, C. A. 1987 Distortion of the vortex core during blade/vortex interaction. AIAA Paper

87-1243.
MAJJIGI, R. K. & GLIEBE, PR. 1984 Development of a rotor wake/vortex model. NASA-CR-174849.
MARPLE Jr., S. L. 1987 Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall.
MEIJER, J. J. & CUNNINGHAM Jr., A. M. 1995 Outline and applications of a semi-empirical method for predicting

transonic limit cycle oscillation characteristics of fighter aircraft. International Forum on Aeroelasticity and
Structural Dynamics, Manchester, U.K., 26—27 June, Vol. 2. Paper 75.

MIGNOLET, M. P. & RED-HORSE, J. R. 1994 ARMAX identification of vibrating structures: model and model order



654 I. JADIC E¹ A¸.
determination. Proceedings of the 35th Structures, Structural Dynamics, and Materials Conference, Hilton Head,
South Carolina, U.S.A. 18—20 April, pp. 1628—1637.

MORINO, L. 1974 A general theory of unsteady compressible potential aerodynamics. NASA CR-2464.
MORINO, L. & KUO, C. C. 1974 Subsonic potential aerodynamics for complex configurations — a general theory.

AIAA Journal 12, 191—197.
RICE, J. R. 1993 Numerical Methods, Software, and Analysis. London: Academic Press.
SHEN, C. C. & PROFT, E. 1980 An accurate method for calculation of potential flows about arbitrary airfoils.

Northrop Corporation. Report No. NOR 80-174.
WEAVER, M. M. & FLEETER, S. 1994 Turbine Rotor Generated Forcing Functions for Flow Induced Vibrations.

International Journal of ¹urbo and Jet Engines 11, 139—161.
YAO, Z. X., JADIC, I., SO, R. M. C., LIU, D. D. & TANG, W. 1995 Flow-induced vibrations on a turbine blade in

a blade row using a vortex dynamics model. Presented at the International Forum on Aeroelasticity and
Structural Dynamics, 26—27 June, Manchester, U.K.

YAO, Z. X. & LIU, D. D. 1994 Vortex dynamics of blade-blade interaction. AIAA Paper 94-0737.
YAO, Z. X., GARCIA-FOGEDA, P., LIU, D. D. & SHEN, G. 1989 Vortex/wake flow studies for airfoils in unsteady

motions. AIAA Paper 89-2225.


	TABLE 1
	FIGURES
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15

	1. INTRODUCTION
	2. TIME-MARCHING FORMULATION
	2.1. AERODYNAMIC MODELLING
	2.2. STRUCTURAL DYNAMIC MODELLING
	2.3. FLUID-STRUCTURE COUPLING
	2.4. TIME HISTORY ANALYSIS

	3. COMPUTATIONAL ASPECTS
	4. FLUTTER ANALYSIS
	5. PREDICTIONS OF LIMIT CYCLE OSCILLATIONS (LCO)
	6. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

